Translation of "is integral to" to Japanese language:
Examples (External sources, not reviewed)
Integral | 積分 |
Integral step | 積分ステップ |
Show integral | 積分を表示 |
Integral step | 選択消しゴム |
So if we take from zero to infinity, what I'm saying is taking this integral is equivalent to taking this integral. | この積分を取ると この積分を取るのは同じことです だから e ー sc f c デルタ関数 t c dtです |
This is equal to the integral from 0 to infinity. | 書き換えると |
Many believe Tactile experience is integral to a.i. development. | 人間との接触はAIの発達に 不可欠だと言われてる |
Anyway, integral from 0 to infinity. | これは uv で つまり uは 1 sのe ーst です |
And this is equal to the integral over the region. | これは2ー ー3です |
And this is a definite integral, right? | この項を評価します |
The integral of 1 is y, the integral of y squared, well that's minus y to the third over 3. | ーy 3 3です ここに何かが存在し得るのでcを書いて置きます |
And then that is equal to the integral from 0 to infinity. | e ー st を配布します |
So what is our integral going to become with this substitution? | この積分はどうなるでしょう 積分で これは tが0から |
I'm going to tell you what the integral of this is. | これは 関数の定義の一部です |
Let's try to set up this integral. | 従来の方法で行います |
So we have this integral of u prime v is going to be equal to this, uv minus the integral of uv prime. | uv uv' そして もちろん これは t の関数です |
This is going to be equal to the double integral over the region. | これら二つを交換し P yー Q x dAに |
That this integral is equal to the double integral over the region this would be the region under question in this example. | これが 問題となる域です これが 問題となる域です この域での Q xー P yで |
So the integration by parts just tells us that the integral of uv prime is equal to uv minus the integral of | uv の積分は uv ーu'v の積分です |
So what's this integral going to look like? | この積分は 粒子がパスに沿って移動する際 力場による仕事の合計です |
And when you do the integration by parts, this could be an indefinite integral, an improper integral, a definite integral, whatever. | 広義積分であるかどうかに関わらず 広義積分であるかどうかに関わらず 領域は 維持されます |
So our integral this was t equals 0 to t is equal to infinity. | 無限大になります t が 0 に等しい場合は x は何ですか |
And that's taking the integral. | だから このy軸で回転した体積は |
A nice new way to measure this is so called integral field spectroscopy. | 積分フィールドスペクトロスコピーと呼ばれる物だ ここではスペクトルグラフは |
So the answer to our line integral is just 5 pi, which is pretty straightforward. | 非常に簡単です ここで 二重積分を実際に行い |
But what we'll do is we'll define the triple integral. | 2番目のビデオで |
We said, this integral is just the original problem again. | 右が起こった理由について考えることができますか |
We actually never even have to evaluate this integral. | 前述のように この積分を再び元の問題だけです |
Set here the spatial integral step. | 彩度の値を設定します |
Minus this integral evaluated at 0. | どうなりますか |
That's what that double integral represents. | すべての小さなdAをまとめると |
And what's the integral of this? | 複雑に見え |
Now, since we want to apply this to an integral, maybe | これを置き換えて |
Well, the first integral I'm integrating with respect to x. | いいですか |
And now I take the integral with respect to y. | すべてのこれらの四角形の y 方向を合計します |
It's going to be the integral, let's just say from t is equal to a, to t is equal to b. | この積分で tをaからbとしましょう aから スタートし 道筋にそって |
It's just going to be 1 this entire time, so our integral simplifies to the definite integral from t is equal to c to t is equal to infinity of e to the minus st times f of t minus is c dt. | 簡素化すると 定積分 でt はc から無限の e st f t c dtです e st f t c dtです |
The number for which the integral value of standard normal distribution is to be calculated | 標準正規分布の整数値を求める数値 |
So your area for this function, or for this integral, is going to be 1. | 積分は 1です 分かりますか |
Let's now do another triple integral, and in this one I won't actually evaluate the triple integral. | 今回は 実際に三重積分を解きません そのかわり 三重積分を定義します |
So anyway, let's take the anti derivative and evaluate this improper definite integral, or this improper integral. | 広義積分を 評価しましょう e ーst の dtに関する |
And then from that, we're going to have to subtract the integral. | この積分を減算します 境界を忘れないようにしましょう |
The integral of u prime times v. | uv uv'に相当します |
And that's where the integral comes in. | 線積分を行います |
So what's the integral of this thing? | 負の無限から正の無限の積分を取ると |
Related searches : Is Integral With - Is Integral Part - Integral To All - Integral To Success - Integral To Production - Integral Time - Integral Member - Integral Element - Integral Gain - Integral Multiple - Integral Shaft - Integral Approach