Translation of "mean and variance" to Japanese language:


  Dictionary English-Japanese

Mean - translation : Mean and variance - translation : Variance - translation :

  Examples (External sources, not reviewed)

Um, we are gonna use this phrase for mean squares for variance, so they both mean variance, mean square and variance same thing.
同じことです そして数学上でも同じです
The mean is just the probability and the variance.
何の説明もなく式を提示しましたが 次の任意のレッスンでこの式を一緒に証明します
That is variance and another term for variance is mean squares because it is the mean of the sum squares.
何故なら二乗和の平均だからです つまり 結果はこれらです 彼の平均
The mean squares over N is the variance.
新しい概念が一つだけ必要です
The mean is 4, and the variance and the standard deviation are 0.
1つしか標本がない時は 分散も標準偏差もないのです
Variance of mean velocity of particles in the measureRect
PropertyName
Variance of mean mass of particles in the measureRect
PropertyName
In a population with a mean height of 70 inches and a variance of 25, what are the mean and variance of the distribution of heights in centimeters?
分散は25です 身長の分布の平均分散を センチメートルで求めるといくつになりますか 1インチは2 54センチメートルとします
And the mean and the variance are computed using these two now familiar formula.
最尤推測値の正確性をどう証明するか スキップする人は今が最後のチャンスです
I'm giving you a skeleton program, which has a function update, that takes as an input a mean and a variance for the first distribution and a mean and a variance for the second distribution and outputs the new mean and the new variance of the product of those.
1つ目の分布の平均分散を入力します 2つ目の分布の平均分散も同様です そしてこれらの積を求めて 新しい平均と新しい分散を出力します
Here I am testing it with a mean of 10 and a variance of 8 and a mean of 13 and a variance of 2, which was one of our examples.
平均が13で分散が2の場合をテストします 結果はこのように12 4と1 6と出るでしょう
The prior has a mean of mu and a variance of sigma squared.
観測の分布には平均のνと共分散のr²があります
Variance of mean kinetic energy of particles in the measureRect
PropertyName
Mu is the mean. Sigma squared is called the variance.
ガウス分布を表す式は未知数Xの関数で
And now I have a variance co variance matrix.
対角成分には分散が 非対角成分には共分散
That is variance explained and variance that is not explained.
Yの分散をカテゴリ分けする時の基本的な方法です
Okay, so sum of squares, mean squares, that gives us variance.
平方根をとって単位を元に戻すと それが標準偏差
Variance
許容誤差
Variance
頂点の数
Variance
分散
That's the formula of the mean, but now I'm asking what's the variance of the mean.
計算してほしいのはこちらの部分に対してです
Now I compute the mean of that new ndata and return it that's my variance.
Pythonにはもっときれいな解法があるようです
More variance allowed for more co variance.
以上から 相関関係を見る時の私からの何か条かの注意文が作れます
Just for the exercise of applying the formula, compute for me the mean and the variance.
ここでは分散の公式は必要ありません データ列から実際の分散を求めてください
position variance
PropertyName
angle variance
PropertyName
velocity variance
PropertyName
angularVelocity variance
PropertyName
acceleration variance
PropertyName
angularAcceleration variance
PropertyName
force variance
PropertyName
torque variance
PropertyName
mass variance
PropertyName
inertia variance
PropertyName
momentum variance
PropertyName
Stiffness variance
PropertyName
Damping variance
PropertyName
Position1 variance
PropertyName
Variance 2
頂点の数
Field variance?
フィールド分散
I would like to know what is the variance of the mean, not the sum, but the mean.
1 Nに同じ総和を掛けます
So we calculated his average or mean points per game and we calculated his variance and standard deviation.
計算しました アベレージを出した方法を思い出してください ゲーム毎のポイントを足して ゲームの数で割った
Now the mean is obviously 50, 0.5100, the variance will be 25, 1000.25.
分散は0 25 10 000 0 0025となります
Now I would like you to do the predict function, which takes our current estimate and its variance and the motion and its uncertainty and computes the new updated prediction, mean, and variance.
動作とその不確実性も引数とします 新しく更新された 推測 平均 分散を計算してください 例えば事前が10と4で動作が12と4であれば
Compute for me the mean and the variance using the maximum likelihood estimator I just gave you.
平均値と分散を計算してください

 

Related searches : Mean Variance - Variance Mean - Mean Variance Portfolio - Mean Variance Optimization - Variance And Covariance - Mean And Include - Mean And Median - Lean And Mean - Mean And Nasty - Variance Report - Unique Variance - Cost Variance