Translation of "いくつかの P " to English language:


  Dictionary Japanese-English

いくつかの - 翻訳 : いくつかの - 翻訳 : いくつかの - 翻訳 : いくつかの - 翻訳 : いくつかの - 翻訳 : いくつかの - 翻訳 : いくつかの - 翻訳 : いくつかの - 翻訳 : いくつかの - 翻訳 :

  Examples (External sources, not reviewed)

または充足不可能であるか つまりすべてのモデルで偽なのかを答えてください 論理式はP P P P
So what I want you to do is tell me for each of these sentences, whether it is valid, satisfiable but not valid, or unsatisfiable, in other words, false for all models.
だから色 p のつもり
Now let's solve for p.
P R H S の値はいくつでしょう
So let me put this in numbers and ask you the challenging question of what's the probability of a raise given that I'm happy and it's sunny?
3つ目は x p x p x
Valid.
1つ目はP A でそこから P A を導くことができます
And the answer is 3.
Pは P を得たあと2つ目のルールでPを消します
The first one looks pretty good. I just apply rule 1.
P そのあとに2つ目のルールを使い Pを消します
How about this? Well, I'm going to apply rule one twice.
あい行くぞE, F, L, E, P, T . P, L, E, P, F, L, E L, E, P, T, L, P, E, F, E, T, Z, E, T.
All right. E, F, L, E, P, T P, L, E, P, F, L, E L, E, P, T, L, P, E, F, E, T, Z, E, T...
リストpを1つずつ行います
We have a for statement where we'll introduce the name e as the variable name.
1つ前の表0にある規則の P P をコピーして
Oh, we were expecting a left parenthesis. Great. I just move my finger over to the right.
p掛ける (p p)の1と p 2 pでp p (1 p)で 綺麗な式にまとまりました
And if you want to factor a p out of this, this is going to be equal to p times, if you take p divided p you get a 1, p square divided by p is p.
P X Y は1 P X Y と等しくなりますか
Now, you might be tempted to say What about the probability of X given not Y?
P Q P Q P Q Q P
And the sentences are P or not P, P and not P,
残り2つはP B A とP B A です
It takes 1 parameter to specify P of A from which we can derive P of not A.
p 1 pで p ( 2p) 2p 2で p p 2 p 3です
And then this term over here, this whole thing over here, is going to be plus p times 1 is p. p times negative 2p is negative 2p squared.
5つのうちどの文がPから導出できるのか よく考えてみてください
Here I have various combinations of open and closed parentheses.
2つの条件P Y X とP Y X があり それぞれの確率は0 6です Yの確率はいくつでしょう
And we have the variable P(X) with probability of 0.2, and we have 2 conditionals, P(Y_BAR_X) and P(Y_BAR_ X), both 0.6.
Pは P もしくは何も続かず 消去されるかのどちらかです
Here are the two rules in this grammar, P goes to open parenthesis,
つまりpの値インデックスiは リストpのこの1つ目の要素になるということです
And i has the value of 0.
P P Q において 下2行の場合でPが真だと分かっています
Male narrator Here are the answers.
P P
Let's say that this is our grammar
それこそがp(x)だ つまりp(x) それがこのプロットの
And the height of this 3 D surface here, that's p of x.
P P とPー です
Once again, based on this P, I'm going to start bringing in rules 1 and 2.
P. T. P
F, L, E, P, T, P L, E, P, F, L, F, L, E, P, T, P, L, F, E, T.
A P P
APPLE.
それぞれの値から算出できます P H S R P S R P H S R P S R
P of happiness given S and R times P of S and R, which is of course the product of those 2 because they are independent, plus P of happiness given not S R, probability of not as R plus P of H given S and not R times the probability of P of S and not R plus the last case,
P(A) Ʃ P(A B) P(B)
Now in probability terms, people often write it as follows
かっこ(Parentheses)の P
Parentheses.
pの要素を1つ1つ処理していきます
Next we'll use a for loop to go through the elements.
urlopenにはいつもpを使います
Probably not even the right concept, but that's my habit.
P P is Jane's bookという文字列を 2つの異なるバージョンで書きました
Just to show you how this sort of thing plays out in Python,
たくさんある方法の1つが Ʃp Xi log p Xi で
In fact, as a foot note, there is a measure of information called entropy.
この値を 3p 4 1 p つまり
This is 2P 3 P.
あるいはPが消えてしまう P イプシロンは書いても書かなくてもいいです
P reduces to or can be rewritten as open parenthesis P, closed parenthesis. or P can just disappear.
P H R はP H R S P S
Let me just do this over here.
P A B P B A P A P B となります P B A を尤度 ゆうど と言います
P of A given B where B is the evidence and A is the variable we care about is P of B given A times P of A over P of B.
今回はtがpにあるかどうかチェックするのではなく tがpにないかどうかチェックします
Here's another way we might define find_element using index.
P P Yと書いてある しかし happiness の中では  I  が正しい
but it's supposed to be an I in happiness.
P P または
So chart state 0 includes the following parse states
しかしPをもっと取れるようにしたいので この規則はpplusがPに置き換えられ ただ1つのPとなる場合です
No matter which branch you take here, you're definitely getting at least one P, but we need you to have the chance to get more.
ピンクの p を得るこの p プラス p 以上 1 プラス プラスです
Now let's add that pink p to both sides of this equation.
P NPは成り立つのでしょうか? 成り立ちます PはNPに NPはEXPに属していますから
This brings us to a point where we can ask one of the most fundamental questions in theoretical computer science and that is does P NP and in particular, here's what we actually know.
それぞれP B A とP B A を 導くことができます 以上がこのベイジアンネットワークの 3つのパラメータです
It takes 2 parameters to specify P of B given A and P given not A, from which we can derive P not B given A and P of not B given not A.
しかし両方とも書き換えた後はpから始まります 5つの文字列はすべてpから始まるのでいいですね 文字列を1つずつ見ていきましょう pだけは生成できるでしょうか
Well, we have two choices for our start symbol that definitely complicates things, but both of them start with a P well that's convenient since all five of our strings starts with a P.
AとBはそれぞれ2通りあるので 組み合わせは4つです P D C はP D C と P D not C という2つのパラメータです
P of C given A B is derived by a distribution over C conditioned on any combination of A and B, of which there are 4 of A and B as binary.

 

関連検索 : いくつかの(P) - いくつか - つかむいくつかの - 手つかず(P) - いくつかの1つ - いくつかの近く