Translation of "で正規化" to English language:


  Dictionary Japanese-English

で正規化 - 翻訳 :

  Examples (External sources, not reviewed)

正規化
Normalized
正規化
Normalize
正規化件名
Normalized Subject
正規分布では正規化定数を無視すると
We already talked about this example earlier in class, but now it's in the content of normal distribution so let me take a second to show this to you.
正規化してください
And then you just normalize all of those, so they add up to one.
これを正規化します
Then I compute the normalizer, which I'LL call α, is the sum of all these guys over here.
あとは正規化するだけです
This is the quintessential term that occurs in the variance calculation of x.
これはM乗を取る正規化郡で
And if you plug in our Gaussian formula, you get the following
正規化する値はいくつですか
So here's the 100,000 question.
彼は正規表現や正規言語 構文解析 実行時最適化生産システム 最適化
All right.
ではどうするか検討するために 正規化してみましょう αは正規化された重みです α1は重み1を正規化群Wで割ったものです
Let's call big W the sum of all these weights, and let's normalize them just for the consideration of what to do, and it's called the normalized weights alpha.
正規化された名前を使う
Use Normalized Name
正規化の項は基本的には
So, for small values of
正規化すると平均輝度はゼロです
We take two patches one from the left image, one from the right image.
ここに正規化がありますが
It's about the same values but, according to this calculation over here, they'd be different.
正規化群はそれら両方の合計で0 1007
And that's obviously 0.0999.
正規化したのは この定数p Z です
You programmed a product between the prior probability distribution and a number.
この数字を正規化の値で割ります
Let's do the same for the non cancer version, pick the number over here to divide and divide it by this same normalizer.
2つの式で正規化群Bを省略して 正規化されていない事後確率を算出しました
We do the same thing with not A.
補間された法線は正規化できません
I should mention one important point with normal interpolation.
以前Pythonで正規表現を使って トークンの規則を符号化した際
But whatever this third expression was, that's what I'd want this subtree this subpart of my tuple to be.
正規化を使っている状況として
Just to reiterate, here is our model and here is our learning algorithm subjective.
次に正規化する必要があります
The particle a will get an importance weight of 0.8, nonnormalized.
正規化された重要度重みを持ち
In this question, we assume that a particle,
正規化するので正確ではありませんが 約0 9の確率です
The reason why that is the case is it relates to the 0.9 probability of speaking the truth.
このラムダは 以前にあった 正規化パラメータだ
C plays a role similar to one over Lambda, where Lambda is the regularization parameter we had previously.
だから正規化してガンになる確率と
The joint probability of cancer and positive is 0.1 0.9. That's the joint that's not normalized.
正規化されていない確率が出ます
We multiply those together.
それからこの2つの合計で正規化します
For the weighted average we get 2 times 10 plus 8 times 13.
正規化します 事前確率は5 8でSECRETは1 15
We normalize this by the same expression plus the probability for the non spam case.
ベイズの定理の結果は非正規化確率Cであり
And we're going to apply the exact same mechanics as we did before.
P A B の正しい確率を求めるには 正規化群ηに この正規化されていない項を掛けます P A B も同様です
And then we can recover the original probabilities by normalizing based on those values over here, so the probability of A given B, the actual probability, is a normalizer, eta, times this non normalized form over here.
正規化パラメータのラムダを選ぶのに 適用した場合です
So that's model selection applied to selecting the regularization parameter
正規化したものを共分散と言います
But this one is just like the variance calculation but it mixes x's and y's whereas these are x² and y².
xとyの両方を正規化するとします
Recall the standard score for x, zₓ is equal to xᵢ x bar divided by the standard deviation of x.
この2つの値を正規化群と掛けると
The normalizer will be 1 over these two things, which is about 9.92.
正規化パラメータのラムダを 変化させていくと クロスバリデーションとトレーニングの誤差が
I'd like to do in this video, is get a better understanding of how cross validation and training error vary as we as we vary the regularization parameter lambda.
ここも同じでyの分散ですが正規化しています
All that's missing is the normalizer.
0 3になります 0 25を0 3で正規化すると0 833となり
When we now normalize, we α 0.25 0.05, which is 0.3.
これができたら正規化の値を計算しましょう
The same for the opposite event of no fire given the neighbor just said, yes, it burns.
ここも正規化していることに気づくでしょう
This over here is kind of a mixed variance. This is often called the covariance.
積を正規化します 移動は畳み込みで表します
Because the product might violate the fact that probabilities add up to 1, there was a product followed by normalization.
0と0 2を正規化しなければいけません
That's the same join for green is 1 times 0.2.
コストだった 二番目のこの項は 正規化の項
The first is this term which is the cost that comes from the training set and the second is this term, which is the regularization term and what we had, we had to control the trade off between these by saying, you know, that we wanted to minimize A plus and then my regularization parameter lambda, and then times some other term B, right?
正規化された画像を取り差を求めます
We normalize, so the average brightness is zero.

 

関連検索 : 正規化 - 正規化 - 正規化 - 正規化データ - 正規化データ - 正規化ベクトル - 正規化ロール - データの正規化 - 正規化係数 - 正規化処理 - データの正規化 - 正規化処理 - 質量正規化 - 正規化強度