Translation of "値する P " to English language:
Examples (External sources, not reviewed)
p 2 p 3になります この項の値は | This is going to be, this term right over here is going to be p squared minus p to the third. |
だからt値 p値 Rスクエアは | So the percentage of variance explained is exactly the same. |
pの値も変更されます | It will change that value to the new exclamation point. |
pとqの値を出します | Now I have an assignment that introduces the new variable q and assigns p to that variable. |
それぞれの値から算出できます P H S R P S R P H S R P S R | P of happiness given S and R times P of S and R, which is of course the product of those 2 because they are independent, plus P of happiness given not S R, probability of not as R plus P of H given S and not R times the probability of P of S and not R plus the last case, |
次はpが指すものをpの元の値 つまりこの値に再び割り当てます | We know that p is a pointer to a list let's say it's 1, 2, and 3. |
つまりEはpの数値を教えるのです | And that's called a mixed strategy. |
pを0 8に設定すると値は0 096に下がります | You might remember for P 0.5 then you go to the truth table, you'll find the answer is 0.375. |
1 pの値を別の値に修正してほしいのです | So all you're going to modify is the 1 p into something that if I give a probability p returns to me the probability of seeing heads twice in this coin that is the probability of heads. |
pの2の位置にある値を以前の値 1に置き換えます | Then we do the assignment. |
そしてpをqに代入します つまりこのリストのオブジェクトであるpの値が | Suppose we introduce the variable q. |
リストpに0 1 2の値を代入します | So let's look at what happens in the Python interpreter. |
p 1 pで p ( 2p) 2p 2で p p 2 p 3です | And then this term over here, this whole thing over here, is going to be plus p times 1 is p. p times negative 2p is negative 2p squared. |
pの最初の値を2番目と同じ値に設定します | In this first procedure, there's only one line. |
P P とPー です | Once again, based on this P, I'm going to start bringing in rules 1 and 2. |
pの値は このあたりに位置するでしょう | The mean, the expected value of this distribution, is p. |
仮定のもとで計算する 技術的には P値は | Well, we calculate this P value based on where it falls, given the assumptions. |
極端な端においやります すると 低いP値を得る | And that puts you out in the extremes of the T distribution or that Z distribution. |
この値を 3p 4 1 p つまり | This is 2P 3 P. |
出力値から内部の状態変数の確率を 知りたいとします ベイズの定理から P z₁ x₁ P x₁ P z₁ となり この計算をすると正規化するための値は | Let's look at the measurement side, and suppose we wish to know the probability of an internal state variable given a specific measurement, and that by Bayes rule becomes P of Z1 given X1 times P of X1 over P of Z1. |
P H R S P S と分解できます この式に数値を代入するとここは1 0 7で | We can factor P of H given R as P of H given R and S, sunny, times probability of sunny plus P of H given R and not sunny times the probability of not sunny. |
さらにpOvershootやpUndershootも pの値に掛けます | We multiply the p value as before for the exact set off by pExact. |
表します そしてこのP値は研究で | So the top line here says the P value that you see. |
帰無仮説が真だとします それがP値の表す事です そして典型的にはP値が0.05以下なら | Given that the null hypothesis is true. |
pの値の可能性は無限にあるので | So, E would announce that strategy for some number P. |
P値を測定する それが有意に0と異なるか見る | We could observe a correlation. |
対応するW値に比例する確率を持つpから 粒子をサンプリングしなければなりません 大きな値を持つpの粒子は | So, in the final step of the particle filter algorithm, we just have to sample particles from P with a probability that is proportional to its corresponding W value. |
つまりpの値インデックスiは リストpのこの1つ目の要素になるということです | And i has the value of 0. |
Pは0以上1以下の値です Xは複数の値をとることができます | Formally, we define a probability function to be P(X), and it's a value that is bounded below and above by 0 and 1. |
思い出してください P値はT値の直接の関数です | Well, remember that the P value that we get, as I just showed you from the normal distribution. |
ここにpの値をとりますが 1 pを返す関数を作ってみましょう | So as the first exercise, say this is the probability, let's print the probability of the inverse event. |
sum listが行うのは入力リストpを用いた p内の合計数値の計算です | This should look familiar. |
セットオフするため これまで同様pの値にpExactを掛けます | We're going to introduce the auxiliary variable s, which we build up in three different steps. |
これによってpの値が変更されます | Now we have an assignment that stores in the value at position 0 of p the letter y. |
31個の確率値があります このベイジアンネットワークが要する確率値は 10個だけです P A は1つの値であり そこからP not A を導くことができます | Whereas the joint distribution over any 5 variables requires 2 to the 5 minus 1, which is 31 probability values, the Bayes network over here only requires 10 such values. |
pでappendを呼び出します そしてpにpの結果 リスト 4 5 を代入します さてこの3つの文を実行すると pのlenの値は何になるでしょうか | Then we use append, passing in 3 as the value to append, invoking append on the variable P, and then we have an assignment that assigns the P the result of P the list 4, 5. |
p掛ける (p p)の1と p 2 pでp p (1 p)で 綺麗な式にまとまりました | And if you want to factor a p out of this, this is going to be equal to p times, if you take p divided p you get a 1, p square divided by p is p. |
p 1はpです | So that cancels out. |
0 pは pです | So this is going to be equal to 1 minus p. |
平均 すなわち この分布の期待値はpです | So pretty straightforward. |
ピンクの p を得るこの p プラス p 以上 1 プラス プラスです | Now let's add that pink p to both sides of this equation. |
値の合計です さて 1 pが失敗の確率で | Well that's just the probability weighted sum of the values that this could take on. |
S P P P またPが何もなしと 書き換えられるPythonコードです | It's that grammar of balanced parentheses. |
P P とあります | Another way to think about that is let's say that we're in a particular state like this one |
P Q P Q P Q Q P | And the sentences are P or not P, P and not P, |
関連検索 : 値する(P) - 値する(P) - 価値(P) - 両側P値 - 公称p値 - 調整p値 - 示唆する(P) - 片側のp値 - 値する人 - 〜に値する - (P) - P-N-Pトランジスタ - 親愛なる(P)