Translation of "放出確率" to English language:
Dictionary Japanese-English
放出確率 - 翻訳 :
Examples (External sources, not reviewed)
事後確率を求めるため この出力の確率に事前確率を掛けます | We now apply Bayes rule. |
コイン1を選ぶ確率がp0 表が出る確率がp1 1 p0でコイン2を選ぶ確率 | And here is my answer. You can really read off the formula that I just gave you. |
Aは0 1の確率でXを出力し 0 9の確率でYを出力します | The probability of observing X and Y depends on what state the hidden markov model is in. |
Bは0 8の確率でXを出力し 0 2の確率でYを出力します | For A, it's 0.1 for X and 0.9 for Y. |
表が2回出る確率は | So now I want to ask you a really tricky question |
では裏が出る確率は | For coin X, we know that the probability of heads is 0.3. |
事前確率p0を陽性の結果が出る確率と掛けて | And here's my code, this implements Bayes rule. |
裏は0 1の確率で出ます | Now that one comes up with heads at 0.9. |
表が出る確率は0 6です | And coin 2 is also loaded. |
そして 表が出る確率は | So there's 2 total events. |
表が出る確率は0 8とします したがって裏が出る確率は0 2です | Now, I'm going to make it really difficult. I'm going to give you a coin let's call it loaded. |
白を出力する確率や 白いマスの上の粒子が黒を出力する確率を | From that you can easily calculate the probability of measuring 'white', if a particle falls on a black square. |
確率を考えましょう 8回中で3回表が出る確率を | So let's say I want to figure out the probability I'm going to flip a coin eight times and it's a fair coin. |
50 の確率 10 25 の確率 20 | Then the value of the state for the action go up would be obtained as follows. |
確率 | Probability |
確率? | Phil, the odds against |
偏りのあるコインの裏が出る確率は0 1なので 取り出される確率の0 5と掛けると 0 05という確率が得られます 質問は表が出る確率についてでした | So 0.5 times 0.95 gives you 0.45 whereas the unfair coin, the probability of tails is 0.1 multiply by the probability of picking it at 0.5 gives us 0.05 |
表が出た後 また表が出る確率です | I'm going to take this coin and I'm going to flip it twice. ... the probability of getting a heads and then getting another heads. |
そして表が出る確率は0 9で | There's a 0.5 chance of taking coin 2. |
裏が出る確率は何でしょう | Suppose the probability of heads is a quarter, 0.25. |
Oは確率qで1を出します | And we could do the same thing on the other side. What if O had to go first? |
表が出る確率を1とします | Let's now go to the extreme, and this is a challenging probability question. |
この値を 今算出した確率とハムの場合の確率の和で割って | Secret carries 1 3, is 1 9, and secret 1 3 again. |
ある範囲の出現確率が得られる確率は 小さくなりません | Now, this statement is not true. |
Oが先に戦略を選びます 1を出す確率がqで2を出す確率は 1 q です | The same argument going on this side. |
確率は | What are the odds? |
今の事前確率は平坦ではなく 出力の確率は以前と同じです | And see what happens. It multiplies. |
表も裏も出る確率が決まっていて 合計は1で1 4の確率で表が出ました | It's a loaded coin, and the reason is, well, each of them come up with a certain probability. |
確率の合計となる値が出ます | Now, what you do, you add those up and then normally don't add up to one. |
コイン1を取り出す確率は0 5です | Then we compute the probability for those 2 cases. |
コイン2を取り出す確率は0 5です | Let's do it with the second case. |
裏が出る確率はいくつですか | Consider a coin that has a probability of landing on heads of 0.7. |
確率変数の具体例を出すので | let's look at some actual random variable definitions. |
表が出る確率が0 5だとすると | The coin can come up heads or tails, and my question is the following |
裏が出る確率は何でしょうか | Suppose the probability for heads is 0.5. |
もしコインを0 5の確率で取り出し | Then we can flip and get heads or tails for the coin we've chosen. Now what are the probabilities? |
正しい事後確率P C を算出できます なら正確な事後確率Pを得られます | However, if I now divide, that is, I normalize those non normalized probabilities over here by this factor over here, |
別の確率を求めてみましょう スパムの確率とハムの確率です | Let's use the Laplacian smoother with K 1 to calculate the few interesting probabilities |
コイン1を取り出す確率は0 5ですが | So this case over here, which indeed has tails, tails. We have 0 probability. |
つまり 三回偶数を出す確率は イコール | It has no impact on what happens on the next roll. |
At ₁の条件下でAtとなる確率に At ₁の確率を掛けた値を算出します | This can be resolved as follows. |
そこで事後確率を出しましょう ロボットが赤の場所で赤を見る確率と | Now, I suppose the robot sees red. |
成功確率 | Probability of success |
失敗確率 | Probability of failure |
では 毎回ごとの確率から調べていきましょう 偶数が出る確率です | So let's just figure out the probability of rolling it each of the times. |
関連検索 : 検出確率 - 検出の確率 - 確率 - 確率 - 確率 - 確率 - 放出 - 放棄率 - 放射率 - 放熱率 - 放電率 - 放射率 - 追放率 - 放射の放出