Translation of "累積確率" to English language:
Dictionary Japanese-English
Examples (External sources, not reviewed)
累積 0の場合は確率密度関数 累積 1の場合は累積分布関数の値を返します | Cumulative 0 calculates the density function cumulative 1 calculates the distribution. |
累積フラグ | Cumulated flag |
確率を50 と見積りました | He estimated a probability that we will fail to survive the current century |
乗法の累積の特性 | And that's what this is right here. |
k 0 の場合は確率密度関数 K 1 の場合は累積分布関数の値を計算します | K 0 calculates the density function K 1 calculates the distribution. |
行うは 累積的な分布を計算します 関数 まあこれはあなたがより小さい確率です | But then to actually figure out the probability of that, what I do is I calculate the cumulative distribution function. |
このポイントの累積分布関数 累積分布から減算します そのポイントの関数です | And so to actually calculate this, what I do is I take the cumulative distribution function of this point and I subtract from that the cumulative distribution function of that point. |
50 の確率 10 25 の確率 20 | Then the value of the state for the action go up would be obtained as follows. |
確率 | Probability |
確率? | Phil, the odds against |
これは 正規分布 ここでは 累積的です | So this is a cumulative distribution function for the same... for this |
いる小さい その累積分布に行くとき | And that's because this value tells the probability that you're less. |
0日目に雨である確率と 雨から雨へと遷移する確率の積に 0日目に晴れである確率と 晴れから雨へと遷移する確率の積を足したものです すべての値を代入すると0 4になります | The probability of rain on day 1 is the probability it was rainy on day 0 and it led to a self transition from rain to rain from day 0 to day 1 plus the probability it was sunny on day 0 times the probability that sun led to rain over here. |
翌日が晴れに変わる確率は0 6です 積は0 132ですね | We know it's rainy with 0.2 chance, which is the complement of 0.78, but a 0.6 chance if it was (inaudible) sunny. |
あなたは事前確率分布と数の積を プログラミングしたのです | You remember this because that's what you programmed. |
細胞損傷が累積されていくと考えられています 損傷の累積が 老化を促進する細胞劣化を招き | Over time the activity of this genetic regulators seems to decline and cumulative cell damage can occur |
確率は | What are the odds? |
ここでは曲線 この曲線下面積 累積であり それを得る方法 | So once again, that number represents the area under the curve here, this area under the curve. |
別の確率を求めてみましょう スパムの確率とハムの確率です | Let's use the Laplacian smoother with K 1 to calculate the few interesting probabilities |
成功確率 | Probability of success |
失敗確率 | Probability of failure |
この全確率は2つの式の積で求めることができます | X2 minus x1 minus 5 squared over sigma squared. |
ピアソンの積率相関係数の | So the important topics to take away from this segment. |
それと画面キャプチャ 私は何か累積的な分布を評価 | This might be taxing my computer by taking the screen capture with it. |
f値はg値の累積と ヒューリスティック値の合計を表します | So the sum of the two is 9, and I call this the f value. |
このように書きます この2つの変数が同時に起こる確率は 周辺確率の積に等しくなります | If 2 random variables, X and Y, are independent, which you're going to write like this, that means the probability of the joint that any 2 variables can assume is the product of the marginals. |
なので 裏になる確率は 100 表の確率 | And these are mutually exclusive events, you can't have both of them |
確率1 は確率40 よりも極端であり | The smallness of that probability is what we mean by extremity. |
正確に1を得る確率 掛ける 3 2を得る確率 3 3を得る確率かな 正確に1を得る確率 掛ける 3 2を得る確率 3 3を得る確率かな ですが 前回の動画を見ていれば | You might say OK, that's the probably of getting exactly 1 times the probability of getting 2 out of 3 plus the probability of getting 3 out of 3. |
XとYが独立であるならば 2つの確率の積を出します | This is just 1 minus 0.2. |
偏りのあるコインだと分かっている時の 確率の積は0 06561で 通常のコインでの同様の確率は0 05625です これらの和はコイン投げの確率Pに等しくなります | So we can see here the probability of having a loaded coin times the probability of the flips given the loaded coin is 0.06561 and the probability of having the same flips with a fair coin times its probability is 0.05625. |
事後確率を求めるため この出力の確率に事前確率を掛けます | We now apply Bayes rule. |
コイン1を選ぶ確率がp0 表が出る確率がp1 1 p0でコイン2を選ぶ確率 | And here is my answer. You can really read off the formula that I just gave you. |
次に確率変数Xがあり確率は0 2です | What's the probability of the joint X, Y? |
そしてここから累進税率が始まる訳です | Expenditures that are exactly twice the amount of the basic income will be the zero point for tax payments. |
95 の確率で | If I pick a random T value, if I take a random T statistic |
0.1 の確率で | There's going to be a 10 percent chance you get a pretty good item. |
何が確率の... | Now let's have something a little bit more interesting. |
確率ですと | Frack the odds. |
同じ確率で | Equally possible, |
確率変数がある値に等しい確率 とか ある値より大きい(または小さい)確率 あるいは 確率変数が特定の性質を持つ確率 | And it makes much more sense to talk about the probability or random variable equaling a value, or the probability that it is less than or greater than something or the probability that is has some property |
AでX3が成立する確率 AでX2が成立する確率 AでX1が成立する確率 Aが成立する確率です | If I keep expanding this, I get the following solution. |
Perfect Storm の確率に 映画である確率を掛けて | Thrun As usual, we can resolve this using Bayes' rule. |
任意の確率変数Xがあり確率は0 2です | Question 1 In the first question, I'm going to ask you some very basic probability questions. |
条件付き確率表によると50 の確率で曇りで 50 の確率で曇りません | In this case, there's only one such variable, Cloudy. |
関連検索 : 累積率 - 累積比率 - 累積発生率 - 累積生存率 - 累積 - 累積 - 累積 - 累積 - 累積体積 - 累積体積 - 累積積分 - 累積数 - 累積値