Translation of "間の線形相関" to English language:


  Dictionary Japanese-English

間の線形相関 - 翻訳 :

  Examples (External sources, not reviewed)

線形の関係ではありませんが相関関係といえます
The answer is yes clearly for different values of A, I get different values of B.
本当に線形の関係ですか ここまで 話してきた相関関係は
What about the second assumption?
二次関数の導関数は線形関数で
And the answer is C.
線形か非線形か見てみましょう 線形の場合は すべての関数と
Now the second thing we have to figure out is this linear or is this a non linear differential equation?
ここで この関数は 線形ですか 非線形ですか
These are the x values, these are y values.
素晴らしく相関してる だが興味深い事に 非線形に だ
And it turns out that those are correlated with super massive black holes as well.
この関数が線形であるには
So in this example, the change in x is always going to be 1.
多角形の辺に相当する線分を作成
Sides of a Polygon
2つの簡単な線形関数の間にある つまりこれですね
If we set the constants this way, n₀, c₁, and c₂, then what we find is that for big enough n this more complicated expression is sandwiched between two simple linear functions or to say it another way
これは線形回帰より複雑なモデルで fをxの線形関数とすると
For such situations there is a model called logistic regression, which uses a slightly more complicated model than linear regression, which goes as follows .
この線やこの線も正の関係です 一方 負の線形関係はこのような感じになります この線やこの線も負の関係です
A perfectly positive linear relationship would look something like this, but this and this are also positive relationships, whereas a negative linear relationship would look like this, but this and this are also negative relationships.
非線形です 他の非線形の例は
Because I squared, I multiplied the second derivative of y with respect I multiplied it times itself.
つまりこれが定数時間です proc1関数が線形時間で実行します
That's just a constant time operation there.
rが最も1に近づくと 相関がより線形に近づくということです
It's equal to 0 if there is no relationship.
関係は完全な直線ではなく線形と言えます
But there's a fair bit of variation around it, so I would say that the relationship is linear but not exact.
任意に上下に移動する 複雑な線形関数が表現できます 線形関数と単位ステップ関数の組み合わせです
So you could imagine, you can make an arbitrarily complicated function of things jumping up and down to different levels based on different essentially linear combinations of these unit step functions.
線形
liter
線形
linear
線形
lightyears
線形
Linear
これは漸近的には線形関数です
Our equation from before, 2n 2 n just becomes Θ(n).
線形回帰Lは正解データから線形関数を引き それを2乗したものの和です
Thrun It's interesting to see how to minimize a loss function using gradient descent.
偏導関数では ありません そして これは 線形ですか 非線形ですか
It's ordinary, because we only have a regular derivative, no partial derivatives here.
線形関数は すべてのxの値の変化に対し
They ask us, is this function linear or non linear?
したがって線形時間オペレーションです
And to remove it, we have to copy things over to fill in the whole.
我々が望むのは線形空間でのレンダリングと
The solution to these problems is called gamma correction.
このカーネルは線形ですか非線形ですか
How about our Gaussian kernel that we discussed in class of size 5 by 5?
元通りの線形回帰の目的関数に戻します
linear regression.
線形スイープ
Linear Sweep
Y 線形
Y linear
線形スケール
Linear Scale
このような線になります だかr 線形関数と呼ばれます
If this was a linear function, then all the points would be on a line that looks something like that.
ここまでの所 線形の関係を見せてきました この回帰直線は
First what I'd like to show you is just, what do I mean by linear and nonlinear.
2つの変数の関係が線形では無く二次の関数をもつ例が
But then when you get to be an expert or an old man in the field, you have a lot of experience and you experience less stress.
彼は自作の簡単な線形の思考関数を使って
We had a student who did equally good a program, only much, much simpler.
線形回帰においてはこの関数は特定の形 w₁ x w₀という形をしています
Once again, we're looking for function f that maps our vector x into y.
線形の場合は
In fact, let me write that down.
1つ目の散布図は このような正の線形関係で
They both display a negatively sloping somewhat linear relationship.
これは線形ですか非線形ですか
If pixels are negative, we just ignore the negative sign and map back to the absolute value.
正解はinput listに対して 線形でproc1関数とproc2関数を実行し
So this is not linear time.
このロジスティック回帰の式と 線形関数fが与えられた時
So here's a quick quiz for you.
このテストは空間把握能力との相関は
So for example, spacial reasoning.
OK 相関関係 これはただ相関関係の定義ですが
And how they can tell us a lot about what's going on in our data.
つまり全関数を通して 線形時間で実行するということです proc3関数に移ります
You're told in the question that both of these are constant time, which means that the whole procedure runs in linear time.
これはxとyの線形の関係を表していましたね
Let me ask a different quiz suppose you run linear regression, and you found that b 4 and a 3.

 

関連検索 : 線形相関 - 線形相関 - 非線形相関 - 線形相関係数 - 相関線 - 線形位相 - 相関曲線 - 間の相関 - 間の相関 - 間の相関 - 線形関係 - 線形関数 - 線形関係 - 線形位相フィルタ