Translation of "間の線形相関" to English language:
Dictionary Japanese-English
間の線形相関 - 翻訳 :
Examples (External sources, not reviewed)
線形の関係ではありませんが相関関係といえます | The answer is yes clearly for different values of A, I get different values of B. |
本当に線形の関係ですか ここまで 話してきた相関関係は | What about the second assumption? |
二次関数の導関数は線形関数で | And the answer is C. |
線形か非線形か見てみましょう 線形の場合は すべての関数と | Now the second thing we have to figure out is this linear or is this a non linear differential equation? |
ここで この関数は 線形ですか 非線形ですか | These are the x values, these are y values. |
素晴らしく相関してる だが興味深い事に 非線形に だ | And it turns out that those are correlated with super massive black holes as well. |
この関数が線形であるには | So in this example, the change in x is always going to be 1. |
多角形の辺に相当する線分を作成 | Sides of a Polygon |
2つの簡単な線形関数の間にある つまりこれですね | If we set the constants this way, n₀, c₁, and c₂, then what we find is that for big enough n this more complicated expression is sandwiched between two simple linear functions or to say it another way |
これは線形回帰より複雑なモデルで fをxの線形関数とすると | For such situations there is a model called logistic regression, which uses a slightly more complicated model than linear regression, which goes as follows . |
この線やこの線も正の関係です 一方 負の線形関係はこのような感じになります この線やこの線も負の関係です | A perfectly positive linear relationship would look something like this, but this and this are also positive relationships, whereas a negative linear relationship would look like this, but this and this are also negative relationships. |
非線形です 他の非線形の例は | Because I squared, I multiplied the second derivative of y with respect I multiplied it times itself. |
つまりこれが定数時間です proc1関数が線形時間で実行します | That's just a constant time operation there. |
rが最も1に近づくと 相関がより線形に近づくということです | It's equal to 0 if there is no relationship. |
関係は完全な直線ではなく線形と言えます | But there's a fair bit of variation around it, so I would say that the relationship is linear but not exact. |
任意に上下に移動する 複雑な線形関数が表現できます 線形関数と単位ステップ関数の組み合わせです | So you could imagine, you can make an arbitrarily complicated function of things jumping up and down to different levels based on different essentially linear combinations of these unit step functions. |
線形 | liter |
線形 | linear |
線形 | lightyears |
線形 | Linear |
これは漸近的には線形関数です | Our equation from before, 2n 2 n just becomes Θ(n). |
線形回帰Lは正解データから線形関数を引き それを2乗したものの和です | Thrun It's interesting to see how to minimize a loss function using gradient descent. |
偏導関数では ありません そして これは 線形ですか 非線形ですか | It's ordinary, because we only have a regular derivative, no partial derivatives here. |
線形関数は すべてのxの値の変化に対し | They ask us, is this function linear or non linear? |
したがって線形時間オペレーションです | And to remove it, we have to copy things over to fill in the whole. |
我々が望むのは線形空間でのレンダリングと | The solution to these problems is called gamma correction. |
このカーネルは線形ですか非線形ですか | How about our Gaussian kernel that we discussed in class of size 5 by 5? |
元通りの線形回帰の目的関数に戻します | linear regression. |
線形スイープ | Linear Sweep |
Y 線形 | Y linear |
線形スケール | Linear Scale |
このような線になります だかr 線形関数と呼ばれます | If this was a linear function, then all the points would be on a line that looks something like that. |
ここまでの所 線形の関係を見せてきました この回帰直線は | First what I'd like to show you is just, what do I mean by linear and nonlinear. |
2つの変数の関係が線形では無く二次の関数をもつ例が | But then when you get to be an expert or an old man in the field, you have a lot of experience and you experience less stress. |
彼は自作の簡単な線形の思考関数を使って | We had a student who did equally good a program, only much, much simpler. |
線形回帰においてはこの関数は特定の形 w₁ x w₀という形をしています | Once again, we're looking for function f that maps our vector x into y. |
線形の場合は | In fact, let me write that down. |
1つ目の散布図は このような正の線形関係で | They both display a negatively sloping somewhat linear relationship. |
これは線形ですか非線形ですか | If pixels are negative, we just ignore the negative sign and map back to the absolute value. |
正解はinput listに対して 線形でproc1関数とproc2関数を実行し | So this is not linear time. |
このロジスティック回帰の式と 線形関数fが与えられた時 | So here's a quick quiz for you. |
このテストは空間把握能力との相関は | So for example, spacial reasoning. |
OK 相関関係 これはただ相関関係の定義ですが | And how they can tell us a lot about what's going on in our data. |
つまり全関数を通して 線形時間で実行するということです proc3関数に移ります | You're told in the question that both of these are constant time, which means that the whole procedure runs in linear time. |
これはxとyの線形の関係を表していましたね | Let me ask a different quiz suppose you run linear regression, and you found that b 4 and a 3. |
関連検索 : 線形相関 - 線形相関 - 非線形相関 - 線形相関係数 - 相関線 - 線形位相 - 相関曲線 - 間の相関 - 間の相関 - 間の相関 - 線形関係 - 線形関数 - 線形関係 - 線形位相フィルタ