Translation of "polynomial coefficients" to Japanese language:


  Dictionary English-Japanese

Polynomial - translation : Polynomial coefficients - translation :

  Examples (External sources, not reviewed)

They have different coefficients.
正と負です
Asking for the standardized. Coefficients.
それらは相関係数と一致すべき この出力はただcor関数を自分のデータフレームに
leading coefficients greater than one.
この手の問題は
Let's say this is my polynomial, let me call my polynomial p of x.
P x とします もっと簡単な多項式は 定数なので
Well all of the coefficients on and I want to be careful with the term coefficients, because traditionally we view coefficients as always being constants but here we have functions of x as coefficients.
従来 係数は定数ですが ここでは xに関する関数です ここでは xに関する関数です
And they both have positive coefficients.
これは
And look at all the regression coefficients.
しかし間違った研究でそれらをやった経験があるなら
Those are the regression coefficients for this example.
これがX1とYの間の傾き
We can look back at the standardized coefficients.
個々の予測変数がどれくらい教職員の給与を説明するか
But we only got the unstandardized regression coefficients.
これはRのもう一つ
What will change are the actual regression coefficients.
ここで アクティブ年数の
There are other correlation coefficients we could calculate.
一つの変数が連続でもう一方がカテゴリ変数の時は
In summary, you really learned about correlation coefficients.
係数は0より大きい場合は xとyに正の相関関係があり
I have this polynomial in the denominator here.
これで何ができますか
low order polynomial such as a plus one, when we really needed a higher order polynomial to fit the data.
フィッティングする必要があるようなデータの時 他方 対照的に このレジームは 高分散の問題に対応する
Sometimes a quadratic polynomial, or just a quadratic itself, or quadratic expression, but all it means is a second degree polynomial.
quadratic とか quadratic expression とかあるけど どれも 2次多項式のことをいう つまり 変数の2乗がある
Because what is, what are these coefficients mean again?
それはXの単位量の増加で予想される Yの変化だ
Let's say I'm defining, so this is a polynomial.
ここに1次項が加えられました
Those are the coefficients that go into the regression equation.
これが予測値Yを変数の集合らX1 X2 X3から
To see how we get those. Multiple, regression coefficients estimated.
見る為に 全部同時に 一度の解析を
So a binomial is just a polynomial with two terms.
2元式の一つが3X二乗引く2Xだとしたら
And I don't know exactly what this third degree polynomial
分かっていません
Really important as we go into R in Lecture nine and we start to look at the significance of regression coefficients and correlation coefficients.
では我々は回帰係数と相関係数の有意から見て行きましょう 我々はRの出力を見てP値を得る事が出来ます それは
And then, we can have multiple predictors and multiple regression coefficients.
ここでもトリックは 複数の回帰係数が
Then we'll talk about the idea of estimation of regression coefficients.
普通の最小二乗法が我々が最初にとるアプローチです
But let's see if we can figure out the coefficients here.
キーのポイントは
So that's this one, where we picked this choice of coefficients.
いいですか aが 1のこの場合は どうなるでしょう
I've chosen the degree d of polynomial using the test set.
テストセットを使って選んだんだった だから我らの仮説は
And this polynomial we're going to do, we're going to keep adding terms to the polynomial, so that we can better and better approximate this function.
順次 項を増やしながら 近似してきます 実際には これを冪級数と呼びます
And what we're going to do in this video is, it's not an experiment, but we're going to play around a little bit, and we're going to try to approximate this function using a polynomial with some coefficients.
遊びがてらに 係数を用いた多項式で 近似したものを探します
And in this case in particular, the coefficients are the same number.
同じ数です 両方とも 1 です
Allowed us to do is move from unstandardized to standardized regression coefficients.
それは持久力のような変数を扱う時には
So you get 2x squared, then merge these terms, add the coefficients.
係数を足します 2a bxは この二つの項で baは
So how is it that these multiple coefficients are estimated all at once?
一度に計算出来るのか そして実際にどうなってるか理解するには
This is where it's important to think about, how to interpret these coefficients.
重要な所です その差が意味するのは このサンプルの女性は 男性より
And what's new is doing multiple regression analysis, asking for standardized regression coefficients.
そうコメントにもある 回帰分析をやって
because you can then include all those polynomial terms of x1 and x2.
全ての多項式を 含むことが出来るからだ だが 興味が湧くような機械学習の問題の中には
And that's what's actually called a quadratic equation, or this second degree polynomial.
この 2 度多項式 しかし それを設定しましょう これはこの問題を解決しようとしています
Let's say you try to choose what degree polynomial to fit to data.
含めるかを選ぼうとしている としよう つまり あなたは線形関数を選びたい
And they tell us a couple of the 0's of this polynomial.
1 0 2 0 の点が
Now a third degree polynomial can have as many as three 0's.
0の点とは
You see, we have this nice coefficients 0.19, 0.22, 0.28, and they're all significant.
そしてこの0.22と0.28は メディエータ追加に関するビフォアーアフターだ
That's good because then when we run imagine that we have some kind of satisfiability algorithm that runs in polynomial time it's running on a polynomial size input, so it's not like we're running a polynomial time algorithm on an exponential size input, which would take exponential time to run.
多項式の大きさの入力で実行することができ 指数の大きさの入力で実行する指数時間を 使用するわけではないからです この場合は多項式時間で実行します
And this is one predictor. So, here are the coefficients that go into this equation.
切片は33.16
A root of a polynomial is the x coordinate of one of its x intercepts.
y ax 2 bx c で表される2次関数を見ています

 

Related searches : Polynomial Time - Monic Polynomial - Quadratic Polynomial - Biquadratic Polynomial - Quartic Polynomial - Polynomial Fit - Polynomial Approximation - Polynomial Evaluation - Polynomial Curve - Polynomial Degree - Polynomial Fitting - Polynomial Expansion