Translation of "polynomial coefficients" to Japanese language:
Dictionary English-Japanese
Examples (External sources, not reviewed)
They have different coefficients. | 正と負です |
Asking for the standardized. Coefficients. | それらは相関係数と一致すべき この出力はただcor関数を自分のデータフレームに |
leading coefficients greater than one. | この手の問題は |
Let's say this is my polynomial, let me call my polynomial p of x. | P x とします もっと簡単な多項式は 定数なので |
Well all of the coefficients on and I want to be careful with the term coefficients, because traditionally we view coefficients as always being constants but here we have functions of x as coefficients. | 従来 係数は定数ですが ここでは xに関する関数です ここでは xに関する関数です |
And they both have positive coefficients. | これは |
And look at all the regression coefficients. | しかし間違った研究でそれらをやった経験があるなら |
Those are the regression coefficients for this example. | これがX1とYの間の傾き |
We can look back at the standardized coefficients. | 個々の予測変数がどれくらい教職員の給与を説明するか |
But we only got the unstandardized regression coefficients. | これはRのもう一つ |
What will change are the actual regression coefficients. | ここで アクティブ年数の |
There are other correlation coefficients we could calculate. | 一つの変数が連続でもう一方がカテゴリ変数の時は |
In summary, you really learned about correlation coefficients. | 係数は0より大きい場合は xとyに正の相関関係があり |
I have this polynomial in the denominator here. | これで何ができますか |
low order polynomial such as a plus one, when we really needed a higher order polynomial to fit the data. | フィッティングする必要があるようなデータの時 他方 対照的に このレジームは 高分散の問題に対応する |
Sometimes a quadratic polynomial, or just a quadratic itself, or quadratic expression, but all it means is a second degree polynomial. | quadratic とか quadratic expression とかあるけど どれも 2次多項式のことをいう つまり 変数の2乗がある |
Because what is, what are these coefficients mean again? | それはXの単位量の増加で予想される Yの変化だ |
Let's say I'm defining, so this is a polynomial. | ここに1次項が加えられました |
Those are the coefficients that go into the regression equation. | これが予測値Yを変数の集合らX1 X2 X3から |
To see how we get those. Multiple, regression coefficients estimated. | 見る為に 全部同時に 一度の解析を |
So a binomial is just a polynomial with two terms. | 2元式の一つが3X二乗引く2Xだとしたら |
And I don't know exactly what this third degree polynomial | 分かっていません |
Really important as we go into R in Lecture nine and we start to look at the significance of regression coefficients and correlation coefficients. | では我々は回帰係数と相関係数の有意から見て行きましょう 我々はRの出力を見てP値を得る事が出来ます それは |
And then, we can have multiple predictors and multiple regression coefficients. | ここでもトリックは 複数の回帰係数が |
Then we'll talk about the idea of estimation of regression coefficients. | 普通の最小二乗法が我々が最初にとるアプローチです |
But let's see if we can figure out the coefficients here. | キーのポイントは |
So that's this one, where we picked this choice of coefficients. | いいですか aが 1のこの場合は どうなるでしょう |
I've chosen the degree d of polynomial using the test set. | テストセットを使って選んだんだった だから我らの仮説は |
And this polynomial we're going to do, we're going to keep adding terms to the polynomial, so that we can better and better approximate this function. | 順次 項を増やしながら 近似してきます 実際には これを冪級数と呼びます |
And what we're going to do in this video is, it's not an experiment, but we're going to play around a little bit, and we're going to try to approximate this function using a polynomial with some coefficients. | 遊びがてらに 係数を用いた多項式で 近似したものを探します |
And in this case in particular, the coefficients are the same number. | 同じ数です 両方とも 1 です |
Allowed us to do is move from unstandardized to standardized regression coefficients. | それは持久力のような変数を扱う時には |
So you get 2x squared, then merge these terms, add the coefficients. | 係数を足します 2a bxは この二つの項で baは |
So how is it that these multiple coefficients are estimated all at once? | 一度に計算出来るのか そして実際にどうなってるか理解するには |
This is where it's important to think about, how to interpret these coefficients. | 重要な所です その差が意味するのは このサンプルの女性は 男性より |
And what's new is doing multiple regression analysis, asking for standardized regression coefficients. | そうコメントにもある 回帰分析をやって |
because you can then include all those polynomial terms of x1 and x2. | 全ての多項式を 含むことが出来るからだ だが 興味が湧くような機械学習の問題の中には |
And that's what's actually called a quadratic equation, or this second degree polynomial. | この 2 度多項式 しかし それを設定しましょう これはこの問題を解決しようとしています |
Let's say you try to choose what degree polynomial to fit to data. | 含めるかを選ぼうとしている としよう つまり あなたは線形関数を選びたい |
And they tell us a couple of the 0's of this polynomial. | 1 0 2 0 の点が |
Now a third degree polynomial can have as many as three 0's. | 0の点とは |
You see, we have this nice coefficients 0.19, 0.22, 0.28, and they're all significant. | そしてこの0.22と0.28は メディエータ追加に関するビフォアーアフターだ |
That's good because then when we run imagine that we have some kind of satisfiability algorithm that runs in polynomial time it's running on a polynomial size input, so it's not like we're running a polynomial time algorithm on an exponential size input, which would take exponential time to run. | 多項式の大きさの入力で実行することができ 指数の大きさの入力で実行する指数時間を 使用するわけではないからです この場合は多項式時間で実行します |
And this is one predictor. So, here are the coefficients that go into this equation. | 切片は33.16 |
A root of a polynomial is the x coordinate of one of its x intercepts. | y ax 2 bx c で表される2次関数を見ています |
Related searches : Polynomial Time - Monic Polynomial - Quadratic Polynomial - Biquadratic Polynomial - Quartic Polynomial - Polynomial Fit - Polynomial Approximation - Polynomial Evaluation - Polynomial Curve - Polynomial Degree - Polynomial Fitting - Polynomial Expansion