Translation of "polynomial degree" to Japanese language:
Dictionary English-Japanese
Examples (External sources, not reviewed)
And I don't know exactly what this third degree polynomial | 分かっていません |
I've chosen the degree d of polynomial using the test set. | テストセットを使って選んだんだった だから我らの仮説は |
And that's what's actually called a quadratic equation, or this second degree polynomial. | この 2 度多項式 しかし それを設定しましょう これはこの問題を解決しようとしています |
Let's say you try to choose what degree polynomial to fit to data. | 含めるかを選ぼうとしている としよう つまり あなたは線形関数を選びたい |
Now a third degree polynomial can have as many as three 0's. | 0の点とは |
Sometimes a quadratic polynomial, or just a quadratic itself, or quadratic expression, but all it means is a second degree polynomial. | quadratic とか quadratic expression とかあるけど どれも 2次多項式のことをいう つまり 変数の2乗がある |
After every step we're canceling out the largest degree of the polynomial we're dividing into. | これが 多項式の除算のやり方です いいですか |
For example, if you use polynomials this might be a high degree polynomial over here and maybe a linear function over here which is a low degree polynomial your training data error tends to go like this. | 低次多項式の線形関数はこちらになります 訓練データ誤差はこのような傾向になります 仮定が複雑になるにつれて |
And so this degree of polynomial, so the parameter is no longer fit to the test set. | パラメータは もはやテストセットに対してフィッティングした物では無い だから今回は |
like the degree polynomial to use with the learning algorithm or choose the regularization parameter for learning algorithm. | 学習アルゴリズムの正規化パラメータを選ぶ助けとしていきます |
If we have a very high degree of polynomial, our training error is going to be really low. | 我ら野トレーニング誤差は極めて低くなる ゼロにすらなるかも 何故ならそれはトレーニングセットにとても良くフィットするだろうから つまり多項式の次数を |
That is, if d the degree of polynomial was too large for the data set that we have. | そしてこの図が これら2つのケースを どうやって見分けるか に関する手がかりを与えてくれる |
On the horizontal axis I am going to plot the degree of polynomial, so as I go the right | 次数 つまり右に行くに連れて |
They say it's a third degree polynomial of the form ax to the third plus bx squared plus cx plus d. | ax 3 bx 2 cx dと表現されています この多項式のいくつかの 0が与えられています |
Let's say this is my polynomial, let me call my polynomial p of x. | P x とします もっと簡単な多項式は 定数なので |
In this video I want to do a bunch of examples of factoring a second degree polynomial, which is often called a quadratic. | 2次多項式の因数分解の例を たくさん示すよ 呼び方は quadratic polynominal とか 単に |
Rotation degree | 回転角度 |
One Degree | 1 度use HST field of view indicator |
1.2 degree. | 1 2... |
Degree of fuzzyness | あいまいさ |
By what degree? | どの角度でだ |
The next thing to do, if we're going to decompose this into its components, we have to figure out the factors of the denominator right here, so that we can use those factors as the denominators in each of the components, and a third degree polynomial is much, much, much harder to factor than a second degree polynomial, normally. | 因数に分解します ここで 分母の因数分解をすると 3次なので |
I have this polynomial in the denominator here. | これで何ができますか |
So in that case, I'm going to pick this fourth order polynomial model and finally what this means is that that parameter d, remember d was the degree of polynomial, right d equals 2, d equals 3, up to d equals 10. | この四次の多項式のモデルを 選ぶ事となり 最終的にはこれはパラメータdを |
Suppose you like to decide what degree of polynomial to fit to a data set, sort of what features to include to give you a learning algorithm. | 何次の多項式まで含めて フィットさせたいか決めたい としよう つまり学習アルゴリズムになんのフィーチャーを含めるか という話だ |
A has a degree of 3, B has a degree of 2, D has a degree of 3, and C has a degree of 2. | このようにオイラーパスの 始点でも終点でもないBとCの次数は |
low order polynomial such as a plus one, when we really needed a higher order polynomial to fit the data. | フィッティングする必要があるようなデータの時 他方 対照的に このレジームは 高分散の問題に対応する |
Select the rotation degree. | 回転させる角度を選択します |
90 degree rotation speed | 90 回転のスピード |
Really, 180 degree change | 180どで二度 |
So it's as if there's one extra parameter in this algorithm, which I'm going to denote d, which is what degree of polynomial do you want to pick? | それをdで表すが 何次の多項式まで含めるか を表す パラメータがアルゴリズムにあるみたいな物だ |
Let's say I'm defining, so this is a polynomial. | ここに1次項が加えられました |
So that is a 90 degree angle, a 90 degree angle and that is a 90 degree angle over there | また この角度は32 となっています |
So the first thing is to think about, is what would a third degree polynomial look like and what are we even talking about when we say 0's. | どのような形をしているかです 0 とは何でしょう グラフを描画しましょう |
And so as we increase of the greater polynomial we find typically that the training error decreases, so I'm going to write j subscript train of theta there, because our training error tends to decrease with the degree of the polynomial that we fit to the data. | 典型的にはトレーニングの誤差は 減少していく だからJ下付き添字trainのシータを書くと |
So this first degree so this is going to be a 0 degree or a constant term Here the degree is 2. | 定数項 です これは 2次で その分子の次数は |
This isn't too hard we just make a note that degree centrality just means that degree which node has the highest degree. | どのノードの次数が一番大きいでしょうか ノード2は3 ノード4は3 ノード6は4 つまりノード6が最大になります |
She received a doctor's degree. | 彼女は博士号を取得した |
You have a bachelor's degree. | あなたは学士号を持っています |
It's got 90 degree corners. | それにいくつかの目印を 書き加えます |
It has 360 degree views. | 4つのバルコニーがありました |
So a binomial is just a polynomial with two terms. | 2元式の一つが3X二乗引く2Xだとしたら |
And in those two years, I graduated with my first degree a bachelor's degree. | 父がやって来ました とても喜んでいました |
I have a bachelor's degree in religion and a master's degree in Biblical studies. | Î ç µ ˆ ÌŽÀŒ ð I know my galactic family is here. |
And the reason is, what we've done is, we've fit this extra the parameter d, that is this degree of polynomial, and we'll fit that parameter d using the test set. | この追加のパラメータdを それは多項式の次数だが これをフィッティングたのだった |
Related searches : Second Degree Polynomial - Third Degree Polynomial - Polynomial Time - Monic Polynomial - Quadratic Polynomial - Biquadratic Polynomial - Quartic Polynomial - Polynomial Fit - Polynomial Approximation - Polynomial Evaluation - Polynomial Curve