Translation of "third degree polynomial" to Japanese language:
Dictionary English-Japanese
Examples (External sources, not reviewed)
And I don't know exactly what this third degree polynomial | 分かっていません |
Now a third degree polynomial can have as many as three 0's. | 0の点とは |
They say it's a third degree polynomial of the form ax to the third plus bx squared plus cx plus d. | ax 3 bx 2 cx dと表現されています この多項式のいくつかの 0が与えられています |
I've chosen the degree d of polynomial using the test set. | テストセットを使って選んだんだった だから我らの仮説は |
So this one must have a third real 0, because if the third one was complex, you'd need another complex 0, and you can't have four 0's for a third degree polynomial. | 複雑な場合は ペアとなっている 0 が必要です 3次の多項式は 4 つの 0 を持つことはできません だから 3 番目の根はどこかに |
And that's what's actually called a quadratic equation, or this second degree polynomial. | この 2 度多項式 しかし それを設定しましょう これはこの問題を解決しようとしています |
Let's say you try to choose what degree polynomial to fit to data. | 含めるかを選ぼうとしている としよう つまり あなたは線形関数を選びたい |
Sometimes a quadratic polynomial, or just a quadratic itself, or quadratic expression, but all it means is a second degree polynomial. | quadratic とか quadratic expression とかあるけど どれも 2次多項式のことをいう つまり 変数の2乗がある |
After every step we're canceling out the largest degree of the polynomial we're dividing into. | これが 多項式の除算のやり方です いいですか |
For example, if you use polynomials this might be a high degree polynomial over here and maybe a linear function over here which is a low degree polynomial your training data error tends to go like this. | 低次多項式の線形関数はこちらになります 訓練データ誤差はこのような傾向になります 仮定が複雑になるにつれて |
So the first thing is to think about, is what would a third degree polynomial look like and what are we even talking about when we say 0's. | どのような形をしているかです 0 とは何でしょう グラフを描画しましょう |
And so this degree of polynomial, so the parameter is no longer fit to the test set. | パラメータは もはやテストセットに対してフィッティングした物では無い だから今回は |
The suspect was given the third degree until he confessed his crime. | 容疑者は自白するまできびしい尋問を受けた |
I was in the third year of my seven year undergraduate degree. | ウィニングラン を していたもので |
like the degree polynomial to use with the learning algorithm or choose the regularization parameter for learning algorithm. | 学習アルゴリズムの正規化パラメータを選ぶ助けとしていきます |
If we have a very high degree of polynomial, our training error is going to be really low. | 我ら野トレーニング誤差は極めて低くなる ゼロにすらなるかも 何故ならそれはトレーニングセットにとても良くフィットするだろうから つまり多項式の次数を |
That is, if d the degree of polynomial was too large for the data set that we have. | そしてこの図が これら2つのケースを どうやって見分けるか に関する手がかりを与えてくれる |
But here, you can do from UNlNTELLlGIBLE the highest degree term here is a second degree term, here it's a third degree term, so we're cool. | 分子が2次なので だいじょうぶです これは 1 つ低い次数です |
The next thing to do, if we're going to decompose this into its components, we have to figure out the factors of the denominator right here, so that we can use those factors as the denominators in each of the components, and a third degree polynomial is much, much, much harder to factor than a second degree polynomial, normally. | 因数に分解します ここで 分母の因数分解をすると 3次なので |
On the horizontal axis I am going to plot the degree of polynomial, so as I go the right | 次数 つまり右に行くに連れて |
Now, if we have a third degree polynomial where these three x values make it 0, we can rewrite this third degree polynomial as we can rewrite it as I'll do it in a slightly different color f of x is equal to x plus 1 you'll see why I'm doing x plus 1 instead of x minus 1 in a second x plus 1 times x minus 2 times x minus r3. | 根 です 書き換えると 色を変えて書きます f x x 1 |
Let's say this is my polynomial, let me call my polynomial p of x. | P x とします もっと簡単な多項式は 定数なので |
In this video I want to do a bunch of examples of factoring a second degree polynomial, which is often called a quadratic. | 2次多項式の因数分解の例を たくさん示すよ 呼び方は quadratic polynominal とか 単に |
Rotation degree | 回転角度 |
One Degree | 1 度use HST field of view indicator |
1.2 degree. | 1 2... |
Degree of fuzzyness | あいまいさ |
By what degree? | どの角度でだ |
I have this polynomial in the denominator here. | これで何ができますか |
So in that case, I'm going to pick this fourth order polynomial model and finally what this means is that that parameter d, remember d was the degree of polynomial, right d equals 2, d equals 3, up to d equals 10. | この四次の多項式のモデルを 選ぶ事となり 最終的にはこれはパラメータdを |
Suppose you like to decide what degree of polynomial to fit to a data set, sort of what features to include to give you a learning algorithm. | 何次の多項式まで含めて フィットさせたいか決めたい としよう つまり学習アルゴリズムになんのフィーチャーを含めるか という話だ |
A has a degree of 3, B has a degree of 2, D has a degree of 3, and C has a degree of 2. | このようにオイラーパスの 始点でも終点でもないBとCの次数は |
low order polynomial such as a plus one, when we really needed a higher order polynomial to fit the data. | フィッティングする必要があるようなデータの時 他方 対照的に このレジームは 高分散の問題に対応する |
Third! | 3つ目! |
Select the rotation degree. | 回転させる角度を選択します |
90 degree rotation speed | 90 回転のスピード |
Really, 180 degree change | 180どで二度 |
So it's as if there's one extra parameter in this algorithm, which I'm going to denote d, which is what degree of polynomial do you want to pick? | それをdで表すが 何次の多項式まで含めるか を表す パラメータがアルゴリズムにあるみたいな物だ |
Let's say I'm defining, so this is a polynomial. | ここに1次項が加えられました |
So that is a 90 degree angle, a 90 degree angle and that is a 90 degree angle over there | また この角度は32 となっています |
It's easy to get a 90 degree angle a tron, and if I take a third of a third of that, that's a ninth of 90 which is another 10 degrees. | それを1 3にして また1 3にすると 90 の1 9ということで 10 になります この通り |
And so as we increase of the greater polynomial we find typically that the training error decreases, so I'm going to write j subscript train of theta there, because our training error tends to decrease with the degree of the polynomial that we fit to the data. | 典型的にはトレーニングの誤差は 減少していく だからJ下付き添字trainのシータを書くと |
third...third prize,middle school spelling bee. | 中学のスペル大会で 3位になった |
So this first degree so this is going to be a 0 degree or a constant term Here the degree is 2. | 定数項 です これは 2次で その分子の次数は |
This isn't too hard we just make a note that degree centrality just means that degree which node has the highest degree. | どのノードの次数が一番大きいでしょうか ノード2は3 ノード4は3 ノード6は4 つまりノード6が最大になります |
Related searches : Polynomial Degree - Third Order Polynomial - Second Degree Polynomial - Third Degree - Degree Of A Polynomial - Third Degree Burns - Third Level Degree - Third-degree Burn - Polynomial Time - Monic Polynomial - Quadratic Polynomial - Biquadratic Polynomial - Quartic Polynomial