Translation of "eddy covariance" to Japanese language:


  Dictionary English-Japanese

Covariance - translation : Eddy - translation :

Eddy covariance - translation :

  Examples (External sources, not reviewed)

Eddy?
エディ
They're going to Eddy in Lagos.
この携帯のほとんどは
Is the covariance large, medium, or small?
1つは最大 1つは中 1つが小です
All we represented was a vector, the mean, and the covariance matrix, and the covariance matrix is quadratic.
そしてもし観測空間が決まった大きさであれば
Now I'm going to ask you about the covariance.
それぞれ1つだけチェックしてください
From there, I can get the variance covariance matrix.
思い出してくれ 分散は二乗和をnで割っただけ もし記述統計をやるのなら
It does help reinforce the concept, of correlation and covariance.
そして共分散は先に進むのにも重要な概念です
And covariance was just sum of cross products divided by n.
nで割った物だった ここでも ちょっと細工して
Say we have a prior of a Gaussian with a mean mu and covariance sigma squared, and our measurement has exactly the same mean and same covariance.
観測の結果もまったく同じ 平均と共分散だったとします これらを掛けて新たな平均を求めると 古い平均と同じ値になりますね
The measurement has a mean of nu and a covariance of r squared.
そして新しい平均のμ'は古い平均値の加重和で
Remember from the lecture on correlation, then, that represents the covariance or correlation.
そして我々はXとYのクロス積を足し合わせる事でそれを計算したのを思い出してください
That is, the covariance is smaller than either of the two covariances in isolation.
直観的に言うと実際に情報を得たのでそうなります
Yes, there is. It turns out the omega matrix is the inverse covariance matrix.
これについてあまり話しませんでしたが 逆共分散行列なので
I didn't really talk much about this, but it is really the inverse covariance matrix.
行列を逆行列にするとすべてのランドマークと ロボットの完全な共分散が得られます
We calculated some basic statistics, such as the mean, the standard deviation, and the covariance.
そしてこのレッスンの核心部分にたどり着き
This over here is kind of a mixed variance. This is often called the covariance.
ここも正規化していることに気づくでしょう
But the way Mrs. Eddy structured the Committee office, there are a lot of resources available, too, around the world.
渉外部員 渉外部補佐 そして 他の多くのキリスト教科学者たちもいます
Contributes to the correlation, to covariance, and we'll contribute to the slope of the regression line.
寄与する事になるのです 我々はまた それをモデルの二乗の和として参照する事も出来ます
The covariance matrix would look exactly as before, because it's not affected by the measurements themselves.
measurementsによる影響を受けないためです さて これらの行列を埋めることが課題です 頑張ってください
Now, b is also easily expressed using the covariance, but now we're normalizing by the variance of x.
ただしここではXの分散で正規化します bはいくつになると思いますか
And if we pre and post multiply that by the variance covariance matrix, that gives us, the correlation matrix.
相関行列が得られる 分散は1に標準化している
If you just invert that matrix, you get the full covariance for all of the landmarks and the robot.
関心のあるランドマークがあるなら
Going into the covariance, we see values along the main diagonals 0.05, 0.05, 0.33, and 0.33 for the velocities.
0 05 0 05 0 33 0 33となっています いくつか非対角要素があります
It has a mean over here called mu, and this example has a much smaller covariance for the measurement.
この例は観測において より小さな共分散を持ちます 事前では位置推定に あまり確信が持てないという例です
I also have a covariance that characters my uncertainty, and that is updated as follows, where T is the transpose.
共分散は次の式で更新されます このTは転置行列です そして観測更新ステップもあります 観測zを用いましょう
This is called often covariance if you've normalized, because it is the variance calculation of a two co occuring variables.
これは同時に起こっている変数の分散だからです これらが分散です
There's a new covariance matrix, and for the third observation followed by the prediction, the prediction is correctly effectively 4, 3.999.
予測のあとの3回目の観察です 予測は正確には3 999で事実上の4です 速度の予測は0 99999で約1です
I thought of a dry leaf imprisoned in an eddy of wind, while a mysterious apprehension, a load of indefinite doubt, weighed me down in my chair.
不安 不定疑いの負荷は 私の椅子に私を圧迫した 発見によって動かない打ったかのように彼は じっと動かない立っていた
I also want you to output the covariance matrix, which has certain elements that are still 0, like these guys over here.
ここにあるように要素は0のままです 主対角線を見ると不確実性はかなり減っています
The formulas for calculating Mu and the covariance matrix Sigma generalize the ones we studied before and they are given over here.
こちらにあるように先ほどの式を汎化したものです ここで求めるのは1列目と2列目の
So there we went from the raw data to, the variance, covariance matrix and the correlation matrix all using this new skill, metrical algebra.
相関行列と この新しいスキル 行列の代数を用いて算出してきました それはそんな長い時間かかってない たった15分 とっても簡単
When you estimate covariance from data and try to understand which direction they point, this kind of eigenvalue anylysis gives you the right answer.
固有値の分析によって正確な答えが得られます
EM is a probabilistic generalization that also allows you to find clusters but also modifies the shapes of the clusters by modifying the covariance matrix.
共分散行列を変更することで クラスタの形も変更します EM法は確率的で対数尤度の空間に収束し
Suppose we have a prior that sits over here and a measurement probability that sits over here really far away and both have the same covariance.
観測の確率はとても離れたところにあります 2つは同じ共分散を持ちます 最初は新しい平均についての問題です
All we have to do, is take a diagonal matrix that has the standard deviations, so that's just the square root, of, the, diagonal entries of the variance covariance matrix.
対角成分のルートを取っていけば得られて そしてそれを左と右から掛ければ
The mountain bike came from users, came from young users, particularly a group in Northern California, who were frustrated with traditional racing bikes, which were those sort of bikes that Eddy Merckx rode, or your big brother, and they're very glamorous.
皆さんの兄さん達が 乗っていたようなレース用の自転車には 派手過ぎて興味が湧かず
The basic idea is that for any Gaussian no matter what the mean and the covariance is, you can state how far inner out a point axis, so let me give you an example.
どれくらいその点が内側か外側にあるか分かります 例を見てみましょう 仮にここに点xを置いて平均も偏差も異なる 別の正規分布と一緒に見てみます
Once I've done this, I know µ, and then I can finally plug it in here, but now I have to go through the data again and compute this guy, so we can finally get to my covariance.
しかし最終的に共分散を知りたい時などには また同じ計算を繰り返さなければいけません そこで今度はこのデータは使わずに こちらのデータだけを使う方法を教えます
P is the initial uncertainty, and I want you to initialize it so that the uncertainty for the x,y coordinates is zero, but the covariance term for the velocities is 1000, indicating that we really don't know the initial velocity.
x y座標の不確実性をゼロにするために 初期化してください 速度の共分散の項は1 000です 初期速度を本当に知らないという意味です 初期位置を知っているだけです
Now, Van Gogh doesn't know anything about physics, but I think it's very interesting that there was some work done to show that this eddy pattern in this painting followed a statistical model of turbulence, which brings up the whole interesting idea of maybe some of this mathematical patterns is in our own head.
しかし興味深いのは この絵の巻きは 乱気流の統計学的モデルに

 

Related searches : Covariance Structure - Covariance Matrix - Error Covariance - Turbulent Eddy - Eddy Losses - Large Eddy - Steady Eddy - Eddy Water - Eddy Flux - Eddy Viscosity - Eddy Current - Eddy Dissipation