Translation of "probability of having" to Japanese language:


  Dictionary English-Japanese

Probability - translation : Probability of having - translation :

  Examples (External sources, not reviewed)

The probability of a positive test and having cancer.
検査結果が陰性でがんである確率
Let's say the probability of having this cancer is 0.1.
ここからガンに侵されない確率を求めてください
So we can see here the probability of having a loaded coin times the probability of the flips given the loaded coin is 0.06561 and the probability of having the same flips with a fair coin times its probability is 0.05625.
偏りのあるコインだと分かっている時の 確率の積は0 06561で 通常のコインでの同様の確率は0 05625です これらの和はコイン投げの確率Pに等しくなります
What do you think is the probability of having that specific type of cancer?
考えるために表を書いてみましょう
Let's assume there are two coins equally distributed, same probability of having each.
コイン1は偏りが無いものです コイン2は表が0 9 90 の確率で出ます
And look what it does to my probability of having received a raise.
晴れていることは幸福の完全な理由で
And this expression equals 0.6080 and so the probability that we have the same coin is simply the probability that we both have type 1 or fair coins, plus the probability of my having coin 2 times the probability of your having coin 2.
2人ともコイン1を持つ確率と 2人ともコイン2を持つ確率を足します それぞれのコインを手にする確率や コイン投げで出る結果の確率は等しいので
So let's look at this, let's look at a population where the probability of success we'll define success as 1 as having a probability of p, and the probability of failure, the probability of failure is 1 minus p.
成功を1としましょう 成功する確率はpで 成功する確率はpで 失敗の確率は 失敗の確率は 1 pです
So if you get a positive test result you're going to raise the probability of having cancer relative to the prior probability.
事前確率と関連してがんである確率が高くなります もし検査で高い確率が出たら その検査を受けなかった場合に比べて
The probability of a negative test and having cancer, and this is not conditional anymore.
どちらも条件付きではありませんね 同時確率です
The probability of having tails given that it's a certain coin is just going to be 1 minus the probability with being heads.
ここでもそのコインとなる確率を掛けて
Probability of success
成功確率
Probability of failure
失敗確率
Let's assume that we know that the probability of actually having a loaded coin is zero.
コイン投げの確率が0 5未満の時 どの選択肢が通常のコインを使っているでしょう
We know this simply because the probability of having a loaded coin at all is zero.
ここでは偏りのあるコインを使う確率Pが0なので ベイズの定理が使えます
Then we get, by virtue of our expansion of the state at time T, the probability of transitioning from rain to rain is 0.6, the probability of having it rain is X again, the probability of transitioning from sun to rain is 0.2, and the probability of having sun before is 1 minus X, so we get X equals 0.4X plus 0.2.
雨から雨へと遷移する確率は0 6で 雨の確率はXです 晴れから雨へと遷移する確率は0 2で
What is the probability of having heads on the first flip or on the second flip if we have one coin with a probability of heads of 0.7 and a second coin with a probability of heads of 0.5?
表が出る確率0 7の1番目のコインと 表が出る確率0 5の2番目のコインを使うとします 2枚のコインのうち 1枚が表となる確率を求めてください
Given that we have a probability of rain of 0.2 on a given day, what is the probability of having rain on at least two days during the week?
1週間の間に雨天の日が 2日以上ある確率はいくつですか
Now let me ask you if the probability of having a loaded coin is 0.1, what happens to the probability of fair given flips in each of these cases.
このとき通常のコインを投げた時の それぞれの確率はどうなりますか 通常のコインを使う時の 0 5以下の確率のものをすべて選んでください
Times the probability of b divided by the probability of a.
割る aの確率となります そしてこれは ベイズ理論 あるいはベイズ法と呼ばれています
Then given the dataset of how your computers in your data center usually behave, you can model the probability of x, so you can model the probability of these machines having different amounts of memory use or probability of these machines having different numbers of disc accesses or different CPU loads and so on.
通常時の振る舞いのデータを 与えられた時に xとなる確率をモデリング出来る
We'd like some way of searching through them efficiently without having to consider the probability of every possible segmentation.
考えずに済む効率的な探索方法が必要でしょう ナイーブベイズを利用するのは そういった理由で好都合だからです
This thing over here is the same as probability of test 2 to be positive, which I'm going to abbreviate with a 2 over here, conditioned on test 1 being positive and me having cancer times the probability of me having cancer given test 1 was positive plus the probability of test 2 being positive conditioned on test 1 being positive and me not having cancer times the probability of me not having cancer given that test 1 is positive.
それをここでは 2とします 検査1で陽性で なおかつがんであるという条件付き確率と 陽性の結果が出た確率の積に
The non normalized probability according to Bayes Rule is obtained as follows the probability of observing H for the fair coin is 0.5, and the probability of having grabbed the fair coin is 0.5 as well.
細工のないコインに対する観察Hの確率は0 5で 細工のないコインをつかんでいる確率も0 5です 観察Hを前提とした細工されたコイン Fで表が出る非正規化確率
Probability of finishing before
この日より前に終了する可能
So that tells us the probability of a given b times the probability of b, is equal to the probability of b given a, times the probability of a.
掛ける bの確率 イコール aを条件とするbの確率 掛ける aの確率と告げています そして この両方をaで割るならば
So the probability of a given b could be the probability of a.
これは bに完全に依存していないかもしれません ですが それを知る方法はありません
So the probability of having four heads in a row from a loaded coin is going to be 0.6561.
一方で通常のコインならば0 0625ですが
I now multiply these 2 things together to get my non normalized probability of having cancer given the plus.
これら2つの値を乗算します 乗算は可換性があるので
We just applied Bayes Rule to compute a really involved probability of having cancer after seeing a test result.
実際にガンがある確率が計算できます
Probability of X2 equals heads.
2通りのパターンがあります
What's the probability of Y?
ここでは全確率の定理を使います
The probability of D2 sunny.
D1が晴れる確率は0 9でしたね
Probability
確率
The probability of success in this example was 0.6, probability of failure was 0.4.
失敗確率は0.4です これらを掛け算すると 0.24が得られて
Now heads has a probability of 0.2 and tails has a probability of 0.8.
従って2回とも裏になる確率は 0 8 0 8 0 64となります
What's the probability of cancer now written in short form probability of C given ?
簡単な問題ではありませんが 考えてみてください
That's equal to the probability of a occurring given b, times the probability of b, which is also equal to the probability of b occurring given a, times the probability of a.
これは Aが 起こった際 Bが起こる確率掛けるAの確率と 同じものです これにより直感が得られると思います
Here you get 0.72, which is the product of not having cancer in the first place 0.9 and the probability of getting a negative test result under the condition of not having cancer.
ガンではない確率0 9に ガンではないのに検査で陰性が出る確率を 掛け合わせます
So, there's the probability of no cancer, probability of negative, which is negation of positive, given C, and probability of negative positive given not C.
そしてガンではないが陽性の結果が出る確率です
My resulting probability will be 1 α of the non normalized probability.
これがまさにベイズの定理です
So what's the probability of b, or the probability of getting four out of six heads?
6回のうち4回表を得る確率は何ですか 何が起こるかを見てみましょう
Divided by the probability of in general, the probability of getting 5 out of 5 heads.
割る 一般の確率 5回中表が5回の確率です 割る 一般の確率 5回中表が5回の確率です では 両面コインを条件で 5回中表が5回の確率はなんでしょうか
This is the formal definition of total probability, which is the probability of A1, given previously in A0, times the probability of being A0.
B₀についても同じように計算します
Perhaps the probability of it being sunny is 0.7, probability of a raise is 0.01.
P R つまり昇給の確率は0 01です そして幸福になる確率は次のように決定されます

 

Related searches : Of Having - Probability Of Exceedance - Probability Of Precipitation - Probability Of Payment - Statement Of Probability - Probability Of Acceptance - Probability Of Obtaining - Probability Of Finding - Probability Of Intercept - Probability Of Purchase - Probability Of Occurring - Probability Of Selection - Probability Of Success